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Abstract: Today, epilepsy keeps its importance as a major
brain disorder. However, although some devices such as
magnetic resonance (MR), brain tomography (BT) are
used to diagnose the structural disorders of brain, for
observing some special illnesses especially such as
epilepsy, EEG isroutinely used for observing the epileptic
seizures, in neurology clinics. In our study, we aimed to
classify the EEG signals and diagnose the epileptic
seizures directly by using wavelet transform and an
artificial neural network model.

EEG signals are separated into &, 6, a, and B spectral
components by using wavelet transform. These spectral
components are applied to the inputs of the neural
network. Then, neural network is trained to give three
outputsto signify the health situation of the patients
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|. INTRODUCTION

In medicine, EEG keeps its importance for identifying the
physiologicd, andthe psychologicd situations of the human
and the functional adivity of the brain. In neurology clinics
EEG device is used efficiently for observing the brain
disorders.

According to the spedral components, and the amplitudes
of these spedral comporents, which EEG consists, different
interpretations can be made &out the recorded waveform
(the patient is hedthy or not). The most important frequency
component of the human’s EEG is a wave (approximately
between 812Hz), and o wave is dmetimes cdled as the
natural frequency of the brain (1). This wave gpeas when
the eyes are dosed and ore begins to rest. In epilepsy cases,
however, when the epileptic seizures occurs, 8, 8 waves,
which have lower frequencies, and higher magnitudes with
resped to a waves, shoud be seen (8, 6 waves has 0-4Hz, 4-
8Hz frequency ranges, respedively). In addition, brain
produces desynchronize waves, which have higher frequency,
lower magnitude, cdled B waves (frequency range is higher
than 13Hz). Therefore, for diagnosing the brain disorders,
these spedral comporents must be analyzed carefully.

When the EEG waveform is observed, it is sen that EEG
waveform is a non-stationary signal. For this reason, when
the frequency components of the EEG is extracted by using
the Short Time Fourier Transform (STFT) and the wavelet
transform, including stft, should be useful than the other
spedrum analyzing methods (AR, ARMA, FFT etc).
Furthermore, viewing the results of the wavelet transform in
time domain shoud be useful to make alditional comments.

0-7803-7211-5/01$10.00©2001 | EEE

After these processes, if we think that the person who
diagnoses the illnesses is a doctor, use of an artificial neural
network (ANN) shoud be offered. Because, by using the
artificial neural network should minimize the arors dore by
doctors when they diagnose theill ness
In ou study, EEG data sets are mlleded by a system, which
has been used in ou previous dudies. From the EEG data
sets, obtained 9, 6, a, and B waves are extracted by using
wavelet transform. After all, acording to these waves an
artificia neural network trained, and developed to dagnose
the epileptic cases.

[I. MATERTIALS AND METHODS

A. Obtaining The EEG Data Sets

In ou previous gudies, a data aceisation and processng
unit (PCI-MIO-16-E4) is used to record the EEG data to
make computer-based analysis. Recordings have been made
as 202 samples during 6 seconds. The acasation urit has a
12 hts analog to digita converter (AD 7572, % 0.02
sensitivity, 0.014ms conversion time) to dscritisize the EEG
waveform. The EEG recording unit is sown in fig. 1.

B. Wavelet Transform

If asignal does not change much over time, we would cdl
it as a stationary signal. Fourier transform could be applied to
the stationary signals easily and good result can be taken.
However, like EEG, a plenty of signas contain non-
stationary or transitory charaderistics, and Fourier Transform
is not suited properly to deted the non-stationary signals.

Signal conditioning system

Patient and electrode system

Fig. 1. Data acquisition system
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In an effort to corred this deficiency, Dennis Gabor (19469
adapted the Fourier transform to analyze only a small sedion
of the signal at atime, which is cdled as Short Time Fourier
Transform. One of the major feaures of stft is mapping the
signal in two-dimensional function d time and frequency.

The Wavelet Transform decomposes a signal onto a set of

basic functions cdled wavelets. These basic functions are
obtained by dilations, contradions and shifts of a unique
function cdled the wavelet prototype.
In order to theinpu signal x(t), Wavelet Transform should be
separated as Continuows Wavelet Transform (CWT) and
Discrete Wavelet Transform (DWT). We ca identify the
CWT asin (1);

CWT(a,b)=f X(t).W* a(t).dt )

where * denotes the mmplex conjugate, aJR" represents the
scae parameter, b OR" represents the trandation, and W,(t)
is obtained by scding the prototype wavelet W(t) at atime b,
andscde aasin (2);

1 [-b
W)= ﬁ LPE{[TE (2

Generally in wavelet applicaions, orthogonal dyadic
functions are dhosen as the mother wavelet. This transformis
often discritisized in a and b ona dyadic grid with the time
remaining continuous. The mother wavelet, commonly used,
is(3);

W () =272t -k) 3)

where { W;(t),j,k0Z} for LA(R)
C. Artificial Neural Network

Neural networks are used as a powerful means in

engineging area dter the development espedally, in
computer techndogy. The fundamental charaderistic of the
neural networks is an adaptive, non-algorithmic and perallel-
distributed memory [1].
Artificial neural networks are modeled by inspiring from
biologicd neural system and have amore simple structure.
Many neural networks were devel oped for resembling several
known charaderistics of biologicd neural networks sich as
leaning and reading. Some daraderistics, however, are
redized with an engineging approach instead of
neuropsychologicd one[2].

I1l. EXPERIMENTAL STUDY

In this gudy, first EEG waveforms have been recorded by
a data aquisition and processng unit. One of the recorded
EEG waveform is down below. Then, the wavelet
transforms of the recorded EEG waveforms are taken by
using daubechies wavelets. Recmrded EEG waveforms are

first divided into low and high wavel et coefficients, and these
low and high wavelet coefficients are divided in to their sub-
high and sub low coefficients. Therefore, 9, 6, a, and 3
wavelets of the original EEG waveform are obtained.
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Fig. 2. Simulated EEG waveform and its ectral components due to wavelet
transform

The results of Wavelet Transform of the different EEG’s are
showninfigure 2, 3, and 4.

In these figures first the EEG waveform has been given.
Then the sub-spedral components depending each EEG are
given. The 6, 6, a, and B waves are viewed in the figure by
the following windows. And figures 2,3,4 show the EEG
waveforms as smulation, hedthy and epileptic respedively.

Classfication is based on the partition d every sedion o
the spaceformed by EEG wavelet signals and determination
of a partitioning function related with those sedions; in case
of theignorance of the mathematicd forms of the partitioning
functions, first a learning adivity should be redized.
Learning adivity provides the determination of the red
values of these functions with the ad of the examples from
every class (training set) [3]. Since the dassfiers are based
on cedding by leaning, they leal to more successul results
with resped to the traditional (non-leaning) methods [4].

Bad propagation network is a multi-layer feed forward
networks. It is an artificial neural network between the input
and an ouptut layer, of which more than one layer isused. In
these immediate layers cdled as hidden layer, there ae
processng elements, which dan't receave input and give
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output without any means. The general layout of a multi-
layer neura network classfier, shown in fig. 5. isgiven[5].
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Fig. 3. Epileptic EEG waveform andits gpedra components due to wavelet
transform
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Fig. 4. Normal EEG waveform and its pedral components due to wavelet
transform
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Fig.5. Multi layer feed forward neura network classfier.

Then the training charaderistics of neural network used in
this study are & follows;

Sructure:
Layer number: 3

The number of neuron onthe layers: (4x202) - 15-3
Training Parameters:

Adaptive leaning coefficient: 0.0005

Momentum coefficient: 0.95

Sum-squared error-ss: 0.0005

Activation Function: tangent sigmoid

The variation d system error in acwrding to the leaning
iteration duing the training stage of badk propagation
network is given in fig. 5. There is nat any instability or
roughnessin training processof the network. This sows the
convenience of the parameters chosen to train the networks.

In the second stage, the trained network was tested with
EEG wavelet signals. As a result it was sen that by
observing the output vedor produced by the network it was
possbleto dagnose the disease.

Finally several types of EEG recordings that we have used
in the study have tested the developed network. And the
resporses of the network to these test signals are shown in
table 1.
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Fig. 6. ss.eandleaning rate versusiteration number

Table 1. Result of thetest signals

Signals Diagnosis  Reaognition
Rate (%)
Testsignal 1 Epileptic 97
Test signal 2 Hedthy 95
Test signal 3 Hedthy 98
Test signal 4 Hedthy 97
Test signal 5 Hedthy 95
Test signal 6 Pathodlogic 93

IV. CONCLUSION

In our study, we have tried to find a new solution for
diagnosing the epilepsy. For this aim, the Wavelet Transform
of the EEG signas have taken, and the 9, 6, a, and 3 sub-
frequencies are etraded. Depending on these sub-
frequencies an artificial neura network has been developed
and trained. The acaracy of the neural network outputs is
too high (%97 for epileptic case, %98 for hedthy case, and %
93 for pathologic case that have been tested). This means that
this neural network identifies the hedth condtions of the
patients approximately as 90 o 100. From this point we can
say that an application d thistheoreticd study will be helpful
for the neurol ogists when they diagnose the epilepsy.

Furthermore we want to develop the pracdicd applicaion
of this gudy. After all a small model of this gystem will be
very useful for the patients suffer from epilepsy.
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